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This paper describes computational algorithms for determining the information matrix
and evaluating the sample size needed for satisfactory estimation of a proposed time
series model. These algorithms are potentially useful to many application studies
where the researcher needs to know the necessary sample sizes for model estimation
prior to committing costly resources for model development or estimation. They are
also useful to simulation studies requiring a priori sample size decisions. The
algorithms apply to any general univariate linear time series model with auto-
regressive and moving average coefficients.
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1. INTRODUCTION

The autoregressive and moving average (ARMA) linear time series

models of Box and Jenkins (1976) are often used in a wide variety of

natural science and social science studies dealing with forecasting. A

unique characteristic of this class of time series models—not shared

by other econometric techniques such as linear regression models

and simultaneous equation systems—is that if the researcher has
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certain prior beliefs about the values of the ARMA model coeffi-
cients he (or she) wants to estimate, then he can analytically
determine the sample size needed for satisfactory model estimation
prior to doing the estimation. This is so because the information
matrix and the related covariance matrix of the ARMA model
coefficients do not depend on residual error variance and hence can
be computed a priori (i.e., without having access to actual realiz-
ations of the model) solely as a function of the sample size and the
values of the model coefficients postulated by the researcher. Using
the computed theoretical standard errors and the postulated coeffi-
cient values, one can then determine the sample size needed to
estimate the coefficients with acceptable magnitudes of standard
errors. Alternatively, if the researcher has no control over the
available sample size, he can evaluate whether a given sample size
can give coefficient estimates with acceptable magnitudes of standard
errors, and thus whether costly resources should be spent on further
development and estimation of a proposed model.

This property of ARMA models has not been exploited in the past
by the many application studies in economics and other areas. One
likely reason is that computational algorithms for determining the
information matrix of a general time series model are not available
in the literature, though some theoretical discussion underlying such
algorithms is available in Anderson (1971), Box and Jenkins (1976),
and other places. The algorithms presented here fill this void. They
apply to any general ARMA(p,q) model, where p refers to the
number of autoregressive coefficients and g refers to the number of
moving average coefficients. These algorithms are designed to
evaluate the standard errors of the coefficients directly, rather than
the standard errors of the corresponding characteristic roots. They
are thus preferable to a narrower procedure discussed by Box and
Jenkins (1976) for determining the covariance matrix of the charac-
teristic roots of an ARMA model, which can be used only when the
roots are real and different from one another. By contrast, the
algorithms described here have a more general and unrestricted
applicability.

2. INFORMATION MATRIX OF AN ARMA MODEL

Consider a stationary and invertible ARMA(p, q) model, written as

®(L)Z,=6(L)e,, @0
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where ¢(L)=1—¢,L—¢,L*...—¢,I7, O(L)=1—0,L—0,1...—0,L,
Z, is the stationary stochastic variable being studied, e, is from a
white noise process with zero mean and a variable of 62, and L is a
lag operated such that [*Z,=Z, _ for x=0. Let K=p+gq.

Denote the (K x 1) vector of coefficients (¢4, ¢, ..., ¢,,01,0,,...,6,)7,
where T represents transpose, as f. Then the (K x K) asymptotic
theoretical covariance matrix of § is given by

vip=I" (22)

where I, is the (K x K) asymptotic information matrix of (2.1). Hence,
to determine the theoretical standard errors of the coefficients as a
function of sample size, one must first compute the information
matrix. To aid in this computation, Box and Jenkins (1976, pp. 240
242) suggest forming two variables, u, and x,, as

d(L)u,=e, (2.3)
and
B(L)x, = —e,. (2.4)

The information matrix is composed of the autocovariances and
cross-covariances of u, and x,. Let n be the sample size. Then the
information matrix can be written as

A B _ _
I,=n~[BT D:|'0 2=no M, (2.5)

where the submatrix A4 is of the order (pxp), B is (px q), BT is the
transpose of B, and D is (g x q).

The submatrix 4 contains autocovariances of u,, {A;;}=V,,(i—)),
where,

Vauk)=Vou(— k)= E(uu, 1) =E(uu, ), (k=1,2,...), (2.6)
is the autocovariance of u, at lagk, and V,_,(0) is the variance of u,.

Similarly, the submatrix D contains {D;;}=V,,(i—j). The submatrix
B of the information matrix contains cross-covariances between u,
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and Xt {Bij} = I/;cx(l_J)s Wherea

Vax(k)=E(u,X, 41), 27

for all k. Note that V,, (k)= V..(—k).

3. ALGORITHMS FOR SAMPLE SIZE

Computing the covariance matrix V(f) requires computing the
variance, covariance and cross-covariance elements of u, and x,.
Algorithms presented in this section do this by utilizing the fact that
these elements can be expressed as functions of the coefficient vector,
with the white noise variance acting only as a scale factor.

Determination of the A and D submatrices, which contain the
autocovariances of the u, and x, processes respectively, can be done
efficiently by using an algorithm given by McLeod (1975), as
corrected by McLeod (1977), for deriving the theoretical auto-
covariance function of an ARMA(p,q) model. Given the coefficient
vector B, this algorithm computes 4;; and D;; as functions of f and
a?. As will be seen below, elements of submatrix B are also scaled by
a2. However, the white noise variance is not a necessary information
with respect to the information matrix since it can be seen from (2.5)
that the submatrices are multiplied by ¢~ 2. In other words, elements
of the information matrix are independent of ¢*. Hence in applying
the algorithm of McLeod for 4 and D and the following algorithm
for B, 6% can be set to 1 without loss of generality.

To compute the B submatrix (which needs to be done only when
p>0 and ¢>0), it is clear from the definition of B;; that one needs
to compute (p—1)+(g—1)+1=p+g—1 cross-covariances of u, and
x,. Computational ease is obtained when these are placed in a
vector z in the following order:

2=(Vix(P—DVix(P=2) ... Vux(O Vi = 1) ... Vi1 =q))".  (3.0)

Elements of z can be obtained by solving a system of (p+g—1) linear
equations of the form Hz=y, where H is a (p+q—1) by (p+q—1)
matrix whose elements are functions of . The vector y is zero except
for the pth element which is 62, as shown below.
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Equations in the above equation system can be derived from
exploiting the following relationship obtained from (2.3) and (2.4):

¢(L)u,= —0(L)x,. (3.2)
Multiplying both sides by u, and taking expectations,

E¢(L)uu,=0= — EO(L)x,u,

= 3. 0,¥iu(t=)) (33)

where 6,=—1 and E is the expectation operator. The first p—1
equations are obtained by taking t=p—1, p—2,...,1. Similarly, the
last g— 1 equations arise from

EO(L)x,xo=0= —E¢(L)u,x,

= _20 ¢;VaxG—1), (3.4)

where ¢,= —1, by taking t=1,2,...,9— 1. Finally, the middle (ie.,
pth) equation is obtained from (3.3) by taking t=p, solving for
V..(p), and substituting into the following expression:

Eex,=0d*=E¢(L)u,x,

)4
= ’ZO ¢p-—j V;x(p _]) (35)
j=
The resulting middle equation has the following format:

2=

it

by Vulo=D)+ 3 0,000 (9

J

Based on the above analysis, the algorithm to compute the
submatrices B and BT for an ARMA(p, q) model is:

ALGORITHM I

1) Start with postulated values for the coefficient vector.
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2) Form the equation system Hz=y described in (3.3), (3.4) and
(3.6).

3) Set a2=1.
4) Compute H ™! and form the vector z in (3.1) as H ™ !y.
5) Form submatrices B and BT.

As noted earlier, the elements of 4, B and D are scaled by ¢2, and
the elements of I, in (2.5) have a factor ¢~ 2. Hence, by arbitrarily
setting 6?=1, the above algorithm and the one by McLeod have
computed the values of the elements of I, except for the sample size
factor n in (2.5). To estimate n, assume that the researcher is
interested in a sample size that would yield sufficiently small
standard errors for each coefficient estimate. Let u be the minimum
desired value for the ratio of each coefficient estimate to its standard
error. Then the desired minimum sample size is given by the
following algorithm:

ALGORITHM 11

1) Start with matrix M defined in (2.5) whose submatrices are
computed using Algorithm I and McLeod (1975).

2) Compute M~ ' ={a;;}.
3) Compute the desired minimum sample size as

2

. A 1
n= Min .
i=1,..., K( B? )

To summarize, the standard errors of an ARMA(p,q) model
coefficients are obtained by first computing the model’s information
matrix whose elements are functions of the postulated coefficients.
The standard errors are then obtained by assuming a desired ratio of
coefficient value to standard error. Alternatively, a procedure similar
to Algorithm II can be written which will compute the expected
standard errors if a sample size is assumed. When the residual errors
are assumed to come from a normal distribution, the ratio, u, of a
coefficient value to its standard error has a t-distribution. Hence the
above algorithms can be used to obtain univariate measures of the
expected statistical significance of the postulated coefficients, for
assumed sample sizes.
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4. CONCLUSION

This paper has presented the algorithms for the computation of the
information matrix of an ARMA model. The algorithms have been
used successfully by Dharan (1983) to evaluate the sufficiency of
available sample sizes for the identification of an ARMA model. The
general applicability of the algorithms to any ARMA(p, q) model
makes them a robust and powerful tool for other researchers to
evaluate the sample size needs for satisfactory estimation of a time
series model whose coefficients are specified by theory or are
initialized by prior belief.

The comments of the reviewer, which greatly simplified the presentation of the
analysis in the paper, are gratefully acknowledged.
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